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Information metric on instanton moduli spaces in nonlinear s models
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We study the information metric on instanton moduli spaces in two-dimensional nonlinears models. In the
CP1 model, the information metric on the moduli space of one instanton with the topological chargeQ
5k(k>1) is a three-dimensional hyperbolic metric, which corresponds to Euclidean anti–de Sitter space-time
metric in three dimensions, and the overall scale factor of the information metric is 4k2/3; this means that the
sectional curvature is23/4k2. We also calculate the information metric in the CP2 model.
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I. INTRODUCTION

A parametrized family of probability distributions is ofte
treated as a statistical model, which is deeply related to n
linear s (NLs) models. The NLs models have arisen in
various contents@1–3#: the Heisenberg ferromagnet mode
the quantum Hall effect, and other statistical mechan
problems; and the conformal field theory, string theory, a
Yang-Mills ~YM ! theories in four dimensions. In such mo
els, instantons play an important role in nonperturbat
analyses@4–6#. From the geometrical point of view, the in
formation metric arises as a metric on the moduli space
the instantons, and in more general as a metric on a man
of probability distributions. It is generally defined by

GAB5E dDxp~x;u!]A ln p~x;u!]B ln p~x;u!, ~1!

wherep(x;u) is the probability density function ofx, param-
etrized byu @7,8#. Here, x is assumed to belong to a fla
D-dimensional spaceRD, u is a realN-dimensional param-
eter (u1 ,u2 , . . . ,uN), and]A is the derivative with respec
to the parametersuA (A51,2, . . . ,N). The space of the pa
rameters corresponds to the instanton moduli space in
paper. If we treat the normalized topological charge den
of the instantons, which is the same as the normalized en
density, as the probability density function, the informati
metric on the moduli space of the instantons naturally
pears from the definition~1!.

Geometrical approaches have many advantages in s
tical physics@9–11#, for example, it has recently been show
that the scalar curvature of the information metric plays
central role in studying the characterization of the ph
structure in statistical mechanics models@12–15#. In this pa-
per, we concentrate upon the geometrical perspective f
which instantons in nonlinears models are combined with
the information metric. The information metric on th
moduli space of the instantons has been studied in YM th
ries in four dimensions and in NLs models in two dimen-
sions. It has been shown so far that the information metri
isometric to hyperbolic space when one instanton with to
logical charge 1 exists in a SU~2! YM theory @16–18# or in a
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rational map@19# which is correspondent to a NLs model in
two dimensions, and also that the information metric is no
degenerate for the moduli space of the multiinstantons
rational maps@19#. What has not been done so far is to stu
the concrete dependence of the information metric on
topological charge of the instantons. That is what we shal
in this paper. We shall, in particular, compute the over
scale factor, which corresponds to the square of ‘‘radius,’
the information metric in the moduli space of one instant
with the topological charge which is greater than or equa
1. The negative reciprocal of the overall scale factor of
information metric is directly correspondent to the curvatu
which is the sectional curvature to be exact. In the geome
cal analyses about the NLs models and statistical models i
general, it is important to investigate the curvature of t
moduli spaces where the instantons live.

The paper is organized as follows. In Sec. II, we brie
review the CPn NLs model. In Sec. III, we compute the
information metric on the moduli space of one instanton w
the topological charge which is greater than or equal to 1
the CP1 model. And, furthermore, we compute the inform
tion metric in the CP2 model. In Sec. IV, we draw conclu
sions and indicate some interesting possibilities to extend
work.

II. DEFINITION OF THE CP n NLs MODEL

To define the two-dimensional CPn model, we take an
(n11)-dimensional complex vector fieldF @20,21#,

F5~f1 ,f2 , . . . ,fn11!. ~2!

The CPn model is defined by the Lagrangian densityL in
two-dimensional Euclidean space-time,

L5
1

2g2
@~DmF!~DmF!†1a~FF†21!#, ~3!

whereDm (m51,2) is the covariant derivative defined by

Dm5]m1 iAm , ~4!

Am5
i

2
@F~]mF!†2~]mF!F†#, ~5!
©2004 The American Physical Society22-1
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a is the multiplier field imposing the constraintFF†51,
and g is the coupling constant. This model has the glo
SU(n11) symmetry and the U(1) local symmetry.

The CPn model defined above has a topological chargeQ,
which is also called a winding number:

Q5E d2xq, ~6!

q52
1

2p
emn]mAn52

i

2p
emn~DmF!~DnF!†, ~7!

whereq is the topological charge density.
The equation of motion is obtained from the Lagrang

density~3!,

DmDmF1~DmF!~DmF!†F50. ~8!

If the self-dual equation

DmF52 i emnDnF ~9!

is satisfied, then the equation of motion is automatically s
isfied. Using this self-dual equation, we get the topologi
charge densityq as follows:

q5
1

2p
~DmF!~DmF!†, ~10!

which is proportional to the Lagrangian density under
constraintF†F51, namely, the relation between the L
grangian density and the topological charge density is

L5
p

g2
q. ~11!

III. INFORMATION METRICS ON MODULI SPACES
OF INSTANTONS

To find the self-dual solution, let us parametrize the fie
F as follows:

F5
W

AWW†
, ~12!

whereW is an (n11)-dimensional vector,

W5~w1 ,w2 , . . . ,wn11!. ~13!

Substituting thisF into the self-dual equation~9!, we find
that if ] z̄W50, then the self-dual equation is satisfied, whe
z5x11 ix2. Moreover, by making use of the U~1! local sym-
metry, we can takeW asW5(h,u2 ,u3 , . . . ,un11), whereh
is a real number (h>0) andui ’s ( i 52,3, . . . ,n11) are ra-
tional functions.

A. Information metric in the CP 1 model

Let us consider the instanton solution in the CP1 model,
which is the most simple NLs model. Since the purpose o
02612
l

t-
l

e

e

this paper is to investigate the information metric on t
moduli space of the instanton with the topological char
which is greater than or equal to 1, we adopt the followi
self-dual solution:

W5@lk,~z2a!k#, ~14!

wherea5a11 ia2 andk is any positive integer. Here,l and
a correspond to instanton moduli parameters. The topolo
cal charge density of this instanton solution is given by

q5
k2

p

l2kuz2au2k22

~l2k1uz2au2k!2
, ~15!

which has a maximum value whereuz2au5@(k21)/(k
11)#1/2kl (k>1). The topological charge of the instanto
solution~14! is k: Q5k. We take the normalized topologica
charge density, which corresponds to the normalized ene
density or the normalized Lagrangian density in the Euc
ean space-time, as the probability density functionp(z;l,a)
of the instanton in the CP1 model:

p~z;l,a!5
1

k
q5

k

p

l2kuz2au2k22

~l2k1uz2au2k!2
. ~16!

By substituting this probability density function into the de
nition of the information metric~1!, we obtain

ds25GABduAduB, ~17!

where

G115
4

3
k2

1

l2
, ~18!

Gi j 5
2p

3

k221

k sin~p/k!

1

l2
d i j , ~19!

G1i5Gi150, ~20!

whereu15l,u25a1,u35a2 and i , j 52,3. If we change the
instanton moduli parametera into b as follows:

a5A2

p

k3 sin~p/k!

k221
b, ~21!

whereb5b11 ib2, it is established that the information me
ric on the moduli space (l,bW ) of the instanton is

ds25
4k2

3

dl21dbW 2

l2
, ~22!

wherebW 5(b1,b2). The overall scale factor of the informa
tion metric is 4k2/3. This hyperbolic three-space correspon
to the Euclidean anti–de Sitter space-time in three dim
sions with the ‘‘radius’’R5A4/3k, which means that the
sectional curvature is23/4k2. If k becomes very large, the
space-time becomes flatter. It is clear that the informat
2-2
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metric on the moduli space of one anti-instanton with
topological charge which is any negative integer is also
three-dimensional hyperbolic metric with the same cur
ture.

B. Information metric in the CP 2 model

In the CP2 model, we consider the information metric o
the moduli space of instantons which haveQ51 and moduli
parameters (l, a, b). The instanton solution is

W5~l,z2a,z2b!, ~23!

wherel is real,a andb are complex numbers. In this cas
the probability density functionp(z;l,a,b) is given by

p~z;l,a,b!5
4

p

2l21ua2bu2

~2l21ua2bu21u2z2a2bu2!2
. ~24!

If we change the coordinatez and the moduli parameters (l,
a, b) into v and (L,c,d) as follows:

z5
1

A2
v, ~25!

a5
1

A2
~c1d!, ~26!

b5
1

A2
~c2d!, ~27!

l5AL22d2, ~28!

the probability density function becomes

p̃~v;L,c,d!5
1

p

L2

~L21uv2cu2!2
. ~29!

This is indeed the same as the probability density funct
for one instanton withQ51 in the CP1 model@see Eq.~16!#.
Therefore, the information metric of the moduli spa
(L,c,d) is easily obtained,

ds25
4

3

dL21dcW2

L2
, ~30!

where cW5(c1,c2). This information metric represents th
hyperbolic three-space, which corresponds to the Euclid
anti–de Sitter space-time in three dimensions, in the sa
way as the case of the CP1 model mentioned in Sec. III A
Notice that there is no dependence on the parametersd and
ddW in this information metric, wheredW 5(d1,d2). The sub-
stitution of Eqs.~25!–~28! into Eq. ~30! leads to the infor-
mation metric for the moduli parameters (l,a,b):

ds25GABduAuB, ~31!
02612
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G115
16

3

l2

~2l21ua2bu2!2
, ~32!

G1i5Gi152G1i 1252Gi 12 15
8

3

ld̃ i

~2l21ua2bu2!2
,

~33!

Gi j 5Gji 5Gi 12 j 125Gj 12 i 125
4

3

d̃ i d̃ j

~2l21ua2bu2!2

1
4

3

d i j

2l21ua2bu2
, ~34!

Gi j 125Gj 12 i52
4

3

d̃ i d̃ j

~2l21ua2bu2!2
1

4

3

d i j

2l21ua2bu2
,

~35!

where u15l, u25a1, u35a2, u45b1, u55b2, i , j 52,3,
A,B51,2, . . . ,5, andd̃ i5ai2bi . Although this information
metric looks complicated, a simple structure is hidden
explained above.

IV. CONCLUSIONS AND DISCUSSIONS

We have shown that in the CP1 model the information
metric on the moduli space of one instanton with the top
logical chargeQ5k(k>1) is the Euclidean anti–de Sitte
space-time metric in three dimensions. The overall scale
tor of the information metric is 4k2/3, and this means tha
the ‘‘radius’’ R5A4/3k and the sectional curvature i
23/4k2. If k becomes very large, the space-time becom
flatter. Furthermore, we have also computed the informa
metric of the moduli space of the instanton in the CP2 model.

The NLs model often arises in string theory as well as
various statistical mechanics problems. Since the topolog
charge of the instanton may be related to the Ramo
Ramond charge or theD-instanton charge in string theory,
is worthwhile to attempt to apply the above results to t
correspondence between conformal field theories and st
theories in the anti–de Sitter space-time, which is called
AdS/CFT correspondence@22#. It is particularly interesting
to investigate the relation between three-dimensional anti
Sitter space-time and a kind of two-dimensional NLs model
from the point of view of string theory. Furthermore, w
should study the information metric on the moduli space
multiinstantons in the NLs models, the YM theories, and
supergravity theory in more detail.
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