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Information metric on instanton moduli spaces in nonlinear & models
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We study the information metric on instanton moduli spaces in two-dimensional nondimeadels. In the
CP' model, the information metric on the moduli space of one instanton with the topological cfarge
=k(k=1) is a three-dimensional hyperbolic metric, which corresponds to Euclidean anti—de Sitter space-time
metric in three dimensions, and the overall scale factor of the information metrié43;4his means that the
sectional curvature is- 3/4k2. We also calculate the information metric in the?GRodel.
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. INTRODUCTION rational map[19] which is correspondent to a NLmodel in

two dimensions, and also that the information metric is non-
A parametrized family of probability distributions is often degenerate for the moduli space of the multiinstantons in
treated as a statistical model, which is deeply related to norrational map$19]. What has not been done so far is to study
linear o (NLo) models. The Nlo models have arisen in the concrete dependence of the information metric on the
various content$1-3]: the Heisenberg ferromagnet model, topological charge of the instantons. That is what we shall do
the quantum Hall effect, and other statistical mechanicsn this paper. We shall, in particular, compute the overall
problems; and the conformal field theory, string theory, andscale factor, which corresponds to the square of “radius,” of
Yang-Mills (YM) theories in four dimensions. In such mod- the information metric in the moduli space of one instanton
els, instantons play an important role in nonperturbativewith the topological charge which is greater than or equal to
analyseg4—6]. From the geometrical point of view, the in- 1. The negative reciprocal of the overall scale factor of the
formation metric arises as a metric on the moduli space ofnformation metric is directly correspondent to the curvature,
the instantons, and in more general as a metric on a manifol@hich is the sectional curvature to be exact. In the geometri-
of probability distributions. It is generally defined by cal analyses about the ML models and statistical models in
general, it is important to investigate the curvature of the
_ D . . ) moduli spaces where the instantons live.
GAB_f d™Xp(X; 0)da INP(X; 6)dg INPOX;0), (1) The paper is organized as follows. In Sec. Il, we briefly
review the CP NLo model. In Sec. Ill, we compute the
wherep(x; ¢) is the probability density function of param-  information metric on the moduli space of one instanton with
etrized by 6 [7,8]. Here,x is assumed to belong to a flat the topological charge which is greater than or equal to 1 in
D-dimensional spac®®, ¢ is a realN-dimensional param- the CP model. And, furthermore, we compute the informa-
eter (01,6, ....0\), anddy, is the derivative with respect tion metric in the CP model. In Sec. IV, we draw conclu-

to the parameter8, (A=1,2,... N). The space of the pa- sions and indicate some interesting possibilities to extend our
rameters corresponds to the instanton moduli space in thigork.

paper. If we treat the normalized topological charge density
of the instantons, which is the same as the normalized energy
density, as the probability density function, the information

metric on the moduli space of the instantons naturally ap- To define the two-dimensional CRnodel, we take an

Il. DEFINITION OF THE CP " NL o MODEL

pears from the definitioiil). (n+1)-dimensional complex vector fiel@ [20,21],
Geometrical approaches have many advantages in statis-
tical physicg9-11], for example, it has recently been shown O=(d1,¢5, ..., Ppsr1). 2

that the scalar curvature of the information metric plays a

central role in studying the characterization of the phaséfhe CP model is defined by the Lagrangian densityin
structure in statistical mechanics modgl2—15. In this pa-  two-dimensional Euclidean space-time,

per, we concentrate upon the geometrical perspective from

which instantons in nonlinear models are combined with 1

the information metric. The information metric on the L=——[(D,®)(D,®)"+a(®d-1)], )
moduli space of the instantons has been studied in YM theo- 29

ries in four dimensions and in Nt models in two dimen- . . R '
sions. It has been shown so far that the information metric i¥/N€€D . (1=1,2) is the covariant derivative defined by
isometric to hyperbolic space when one instanton with topo- .

logical charge 1 exists in a §B) YM theory[16—18 orin a Du=du+iA,, )

i
- T_ T
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« is the multiplier field imposing the constraidt®™=1, this paper is to investigate the information metric on the

and g is the coupling constant. This model has the globalmoduli space of the instanton with the topological charge

SU(n+1) symmetry and the U(1) local symmetry. which is greater than or equal to 1, we adopt the following
The CP model defined above has a topological chagge self-dual solution:

which is also called a winding number: W=[\K (z—a)K], (14)

a correspond to instanton moduli parameters. The topologi-

sz d?xq, (6) wherea=a'+ia? andk is any positive integer. Here, and
i cal charge density of this instanton solution is given by

q:_zeﬂvaMAV:_EE;LV(D;Lq))(DV(I))TI (7) K2 7\2k|z_a|2k72
. . _ = Bt a2’ 9
whereq is the topological charge density. T (N +[z—al®)
derTshifyg;ua“on of motion is obtained from the LagranglanWhich has a maximum value wher—a|=[(k—1)/(k
’ +1)]¥%\ (k=1). The topological charge of the instanton
DMDM¢+(DM¢)(DM¢)T¢ZO, (8)  solution(14) is k: Q=k. We take the normalized topological
charge density, which corresponds to the normalized energy
If the self-dual equation density or the normalized Lagrangian density in the Euclid-
. ean space-time, as the probability density functidm; \ ,a)
D,P=—ie,,D,P (9 of the instanton in the CPmodel:

is satisfied, then the equation of motion is automatically sat- 1 k AZ|z—a|?k2
isfied. Using this self-dual equation, we get the topological p(z;\,a)=—q=— T (16)
charge density as follows: K™ (24 |z—a]?)

1 By substituting this probability density function into the defi-
q= E(DMCD)(D,L@)T, (10 nition of the information metri¢1), we obtain
dSZZGABdeAdHB, (17)

which is proportional to the Lagrangian density under the
constraintd'd=1, namely, the relation between the La- where
grangian density and the topological charge density is

Gu=7k*—, 18
c="q. (11) 13T )2 (19

IIl. INFORMATION METRICS ON MODULI SPACES Ci =3 ksin(alk) 2 i (19
OF INSTANTONS

To find the self-dual solution, let us parametrize the field G1i=Gi1=0, (20
© as follows: where#'=\,6°=al,#°=a? andi,j=2,3. If we change the
W instanton moduli parameterinto b as follows:
O=——, 12
T (42

2 k3 sin(w/k
az 2 sl . 21)
T k*-1

W= (W1, Wy, ... Wpiq). (13) whereb=b'+ib?, it is established that the information met-
ric on the moduli space B) of the instanton is

whereW is an (0+ 1)-dimensional vector,

Substituting this® into the self-dual equatiof®), we find

that if 7,W=0, then the self-dual equation is satisfied, where 4k2 d\2+db?
z=x+ix2. Moreover, by making use of the(l) local sym- d32=T —z (22)
metry, we can tak®/ asW=(»,u,,us, ... U, 1), wheren

is a real number£=0) andu;’s (i=2,3,...n+1) are ra-

tional functions whereb=(b%,b?). The overall scale factor of the informa-

tion metric is 42/3. This hyperbolic three-space corresponds
. o N to the Euclidean anti—de Sitter space-time in three dimen-
A. Information metric in the CP = model sions with the “radius”R=\4/3k, which means that the
Let us consider the instanton solution in the!GRodel,  sectional curvature is- 3/4k2. If k becomes very large, the
which is the most simple Nk model. Since the purpose of space-time becomes flatter. It is clear that the information
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metric on the moduli space of one anti-instanton with the 16 A2
topological charge which is any negative integer is also the ang — (32
three-dimensional hyperbolic metric with the same curva- (2\*+|a—bl%)
ture.
Gy=Giy=— Gy a=—Gi g 1= \o
B. Information metric in the CP 2 model 1i— i1 li+2™ it217 4 (2)\2+|a—b|2)2,
In the CP model, we consider the information metric on (33
the moduli space of instantons which ha@e=1 and moduli
parametersX, a, b). The instanton solution is 4 ~5i75j
G =G:=Gi.0 .o=Girnio=o——
W=(\,z—a,z—b), (23) WO TR AR (0024 |a—D|?)2
where\ is real,a andb are complex numbers. In this case, 4 3ij
the probability density functiop(z;\,a,b) is given by + 3 N2+ |a—b|2' (34)
(Znab) 4 2\%+]a—b|? 24 .
p(zA,a,0)= — . 4 56 4 Sii
7 (2M2+|a—b|2+|2z—a—b|?)2 Gii+2=Gju2i=— 2 =555 t3-5 5
3 (2\%+]a—hb|»)? 3 2A%+|a—b|
If we change the coordinateand the moduli parameters ( (35)

a, b) intov and (A,c, ) as follows:

_ 1

= \/EU,
- (c+s
a= \/E(C )1
b= (c-5
_\/E(C )1
A= VAT= &,

the probability density function becomes

S (0:A.0.8) 1 A?
; ,CY :_—'
P T (A2+[o—c?)?

where 9=\, ¢°=al, 6°=a?, #*=bl, 6°=b? i,j=2,3,
A,B=1.2,...,5 and =a —b'. Although this information

(25) metric looks complicated, a simple structure is hidden as
explained above.
(26) IV. CONCLUSIONS AND DISCUSSIONS

We have shown that in the &Rmodel the information
metric on the moduli space of one instanton with the topo-
(27 logical chargeQ=k(k=1) is the Euclidean anti—de Sitter
space-time metric in three dimensions. The overall scale fac-
tor of the information metric is K?/3, and this means that
(28)  the “radius” R=4/3k and the sectional curvature is
—3/4k%. If k becomes very large, the space-time becomes
flatter. Furthermore, we have also computed the information
metric of the moduli space of the instanton in the?@Rodel.
The NLo model often arises in string theory as well as in
various statistical mechanics problems. Since the topological
charge of the instanton may be related to the Ramond-

(29

This is indeed the same as the probability density functiofRamond charge or the-instanton charge in string theory, it
for one instanton witlQ=1 in the CP model[see Eq(16)].  is worthwhile to attempt to apply the above results to the
Therefore, the information metric of the moduli spacecorrespondence between conformal field theories and string

(A,c,9) is easily obtained,

4 dA%+dc?

i e

theories in the anti—de Sitter space-time, which is called the

AdS/CFT correspondend®?2]. It is particularly interesting

to investigate the relation between three-dimensional anti—de
(30 Sitter space-time and a kind of two-dimensionaldNimodel

from the point of view of string theory. Furthermore, we

should study the information metric on the moduli space of

where c=(c',c?). This information metric represents the multiinstantons in the Niz models, the YM theories, and
hyperbolic three-space, which corresponds to the Euclideagupergravity theory in more detail.

anti—de Sitter space-time in three dimensions, in the same

way as the case of the &Pnodel mentioned in Sec. Il A.

Notice that there is no dependence on the paramétarsd
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